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ABSTRACT

The automatic classification of protein sequences into families is of great help for the
functional prediction and annotation of new proteins. In this article, we present a method
called Irredundant Class that address the remote homology detection problem. The best
performing methods that solve this problem are string kernels, that compute a similarity
function between pairs of proteins based on their subsequence composition. We provide
evidence that almost all string kernels are based on patterns that are not independent, and
therefore the associated similarity scores are obtained using a set of redundant features,
overestimating the similarity between the proteins. To specifically address this issue, we
introduce the class of irredundant common patterns. Loosely speaking, the set of irre-
dundant common patterns is the smallest class of independent patterns that can describe all
common patterns in a pair of sequences. We present a classification method based on the
statistics of these patterns, named Irredundant Class. Results on benchmark data show that
the Irredundant Class outperforms most of the string kernels previously proposed, and it
achieves results as good as the current state-of-the-art method Local Alignment, but using
the same pairwise information only once.
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1. INTRODUCTION

The increasing availability of biological sequences, from protein sequences to entire genomes,

poses the need for the development of automatic classification tools. In this article, we address the

classification of proteins based on their primary structure, that is the amino acid sequence. This classification

problem can also be treated as a binary string classification problem.

A number of methods have been proposed for the protein sequence classification. Historically this

problem has been studied, for quite some times, in the field of text documents classification. Un-

fortunately most of the proposed approaches, developed for a different kind of strings, fail when applied

to biological sequences. The main reasons of this failure are the different nature of biological sequences,

particularly rich of regularities known as patterns that are difficult to digest for a general purpose

application.
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The main distinction is between generative methods against discriminative methods. The former class

includes methods such as protein family profiles (Gribskov et al., 1987), hidden Markov models (HMMs)

(Krogh et al., 1994; Baldi et al., 1994; Karplus et al., 1998), and PSI-BLAST (Altschul et al., 1997). These

methods tend to derive a model for a set of proteins and then check whether a candidate protein fits the

model or not. Unlike generative methods, discriminative methods (such as Jaakkola et al., 1999; Liao and

Noble, 2003; Leslie et al., 2002, 2004; Saigo et al., 2004; Hou et al., 2003; Rangwala and Karypis, 2005;

Kuang et al., 2005) focus on finding which sequences can describe a set of proteins despite of another set.

Recent results (Liao and Noble, 2003; Leslie et al., 2004) suggest that the best-performing methods are

discriminative string kernels. These methods use kernel functions based on common patterns of pairs of

protein sequences to train a support vector machine (SVM) (Vapnik, 1998; Cristianini and Shawe-Taylor,

2000). The string kernel extracts information from sequences and computes either a feature vector for each

sequence or directly a kernel matrix with scores between pairs of sequences.

The first string kernel, called Fisher’s kernel ( Jaakkola et al., 1999), uses an HMM to provide the

necessary means of converting proteins into fixed-length vectors. The vector summarizes how different the

given sequence is from a typical member of the given protein family. In the Pairwise kernel (Liao and

Noble, 2003), the feature vector corresponding to a protein sequence is formed by all E-values, given by the

Smith-Waterman algorithm (Smith and Waterman, 1981), computed on the sequence analyzed and each of

the training sequences of a particular experiment.

The Spectrum and the Mismatch kernels (Leslie et al., 2004, 2002) use as protein features the set of all

possible substrings of amino acids of fixed length (k-mers). If two sequences contain many of the same

k-length contiguous subsequences, their inner product under the k-Spectrum kernel will be large.

Equivalently, the Mismatch kernel computes a large inner product between two sequences if these se-

quences contain many k-length contiguous subsequences that differ by at most e mismatches.

The Local Alignment method (Saigo et al., 2004) mimics the behavior of the Smith-Waterman algorithm

to build a family of valid kernels. Following the work of Haussler (1999), they defined a kernel that mimics

the detection of all local alignments between two sequences by convolving simpler kernels. In the Word

Correlation Matrices method (Lingner and Meinicke, 2008), the kernel is defined by average pairwise word

similarity between two sequences. The consequent analysis of discriminative words allows also for the

identification of characteristic regions in biological sequences.

Other methods, such as the I-Sites (Hou et al., 2003), encode into feature vectors information related both

to three-dimensional structure properties and sequence similarities of proteins. Or, like the eMOTIF-

database method (Ben-Hur and Brutlag, 2003), they define a kernel function in terms of occurrences of

sequence motifs previously stored in databases, and tipically extracted using popular algorithms on ref-

erence sequences. In particular, the Profile-based Mismatch methods (Kuang et al., 2005) use probabilistic

profiles, such as those produced by the PSI-BLAST algorithm, to define kernels based on position-

dependent mutation neighborhoods of k-mers with mismatches (in a similar way to the original Mismatch

kernel). In contrast, the Profile-based Direct methods (Rangwala and Karypis, 2005) build kernel functions

combining sequence profiles obtained with different approaches for determining the similarity between

pairs of protein sequences. Note that the latter methods make an extensive use of hyperparameters, in-

creasing the risk of overfitting.

We selected for comparison with our method some of the algorithms presented above, in particular those

with state-of-the-art performance on the classification of proteins and which seem somehow more reliable:

Fisher, Pairwise, Spectrum, Mismatch, Local Alignment (version ‘‘eig’’), and Word Correlation Matrices.

In general, all pattern-based methods operate two distinct steps: first extract and process common patterns

from pair of sequences, then use this set of patterns as features to build an automatic classification tool

based on SVMs, and so does the method proposed here. As we will show in the next sections, almost all

string kernels are based on patterns that are not independent, namely patterns with occurrences that are

related each other. Any score built using a set of related patterns is in practice based on redundant features,

and therefore it can potentially overestimate the similarity score.

In this article, we want to stress the idea that if the learning process has to deal with a set of redundant

features, this might mislead the classification. The goal is somehow similar to the feature selection problem,

but in the case of pattern-based methods for classification contexts, the class of irredundant common

patterns is specifically designed to address the issue of a repeated information. Our conjecture is that a set

of irredundant common patterns, and consequently a set of independent features, can facilitate the auto-

matic learning and classification of sequences.
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2. METHODS

2.1. The irredundant class

The method is based on the extraction and filtering of patterns that are common to two sequences, using

the mathematical notion of irredundancy. This notion was studied first by Parida (1998) for the case of

repeated patterns on a single sequence, and thereafter elsewhere (Apostolico and Parida, 2004; Pisanti et al.,

2005; Apostolico and Tagliacollo, 2008). In Comin and Verzotto (2010), we extended the notion of

irredundancy to the case of two sequences, to avoid the overcount of common patterns that ‘‘cover’’ the

same region of a sequence. Indeed, one can easily show that there are lots of protein sequences that share an

unusually large number of common patterns without conveying extra information about the input (see

Table 4 below). To keep the article self-contained, here we summarize the basic facts already proved in

Comin and Verzotto (2010).

Let s1 and s2 be two sequences, respectively, of m and n characters over an alphabet S. A character from

S is called a solid character, while a don’t care character ‘�’ equals and represents any character on S. Let

s1[i, j] be the subsequence given by the j� iþ 1 consecutive characters of s1 starting from position i. We

call a suffix of s1 any subsequence of the type s1[i, m], with 1� i�m.

A pattern p is a string over S(S[{�})*S, thus having at least two solid characters: the first and the last

character. A location [i, j] of s1 is an occurrence of p if s1[i, j]¼ p. A common pattern is a pattern that

occurs in both s1 and s2.

Definition 1 (Coverage). For characters s1 and s2 we write that s1� s2 if s1 is a don’t care or

s1¼ s2. Given two different patterns p1 and p2, respectively, of q and r� q characters, we say that the

occurrence [i, qþ i� 1] of p1 on s1 is covered by p2 if (1) p1� p2[j, qþ j� 1] for such an offset j� 0,

considering the characters corresponding to the same positions, and (2) s1[i� j, rþ i� j� 1]¼ p2.

In other words, property (1) of Definition 1 says that p2 has to extend p1 in composition (that is, p2 would

be more specific than p1) and/or in length, and (2) indicates that p2 occurs in the same region of p1. We give

an example of coverage in Figure 1. In this case, the occurrences of the common pattern ABA at [7, 9] on s1

and [1, 3] on s2 are covered, respectively, by the common patterns ABAA�C and A���ABA. Using Definition

FIG. 1. Coverage of pattern oc-

currences. Example of pattern oc-

currence coverage on the sequences

s1¼ABAAACABACDD and

s2¼ABAABCBABAAC of length

12. The occurrences of the meet

ABA are covered, respectively, by

the meets ABAA�C and A���ABA.
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1 we can now define an irredundant common pattern as a common pattern with an occurrence that cannot

be deduced from the other common patterns without knowing the input sequences:

Definition 2 (Irredundant Common Pattern). A common pattern p is irredundant if at least an oc-

currence of p on s1 or s2 is not covered by other common patterns.

Clearly, a pattern that is not irredundant is called redundant.

Definition 3 (Meet). The meet of two subsequences of s1 and s2 is obtained by matching the char-

acters corresponding to the same positions, inserting a don’t care in case of mismatch, and thereafter

deleting all leading and trailing don’t cares. In this case every meet is also a common pattern if it has at

least two characters.

As a result of Lemma 1 presented in Comin and Verzotto (2010), we have the following:

Theorem 1. Every irredundant common pattern of s1 and s2 is the meet of a sequence with a suffix of

the other one.

Proof. In Lemma 1 of Comin and Verzotto (2010), we showed that a common pattern must appear

at least in the meet of a sequence with a suffix of the other one to be irredundant, and this proves the

theorem. &

For example, in Figure 1, the common pattern ABA is the meet of s2 with the suffix s1[7, 12] of s1.

However ABA turns out to be in any case a redundant pattern, therefore we need a more sophisticated

algorithm to discover the whole class of irredundant common patterns, or Irredundant Class. In this regard,

we refer the reader to the algorithm presented in Comin and Verzotto (2010).

As an immediate consequence of Theorem 1, we obtain that the number of irredundant common patterns

of s1 and s2 is linear in the number of characters (or length) of the sequences:

Theorem 2. The number of irredundant common patterns of s1 and s2 is at most mþ n� 3.

Proof. As of Theorem 1, the maximum number of meets between a sequence with the suffixes of the

other one is limited in number by the length of s1 and s2. These common patterns, necessarily of length

greater than 1, are at most mþ n� 3. &

Finally, we note that if s1 and s2 are identical, there is only one irredundant common pattern: the

sequence itself. Moreover, we can extract the Irredundant Class in time O(z2 log z log jSj), where z¼mþ n,

making use of the FFT in the step of searching for occurrences of the mþ n� 3 meets described above.1

2.2. Scoring the irredundant class

Once the Irredundant Class I s1, s2
of s1 and s2 is acquired, we score this set of patterns using their

frequencies and some properties of the amino acid composition. Here, we report the general form of the

scoring function:

Score(s1, s2)¼ ln
X

p2I s1, s2

Fp

E[Fp]

0
@

1
A,

where Fp is defined as the number of occurrences of the pattern p in s1 and s2, and E[Fp] is the

expected value of Fp. The value E[Fp] is computed combining the probability of each character a of p,

extracted from the BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992), with the length of the

sequences:

1This step, which is the most expensive in our procedure presented in Comin and Verzotto (2010), is described in
detail in Fischer and Paterson (1974).
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E[Fp]¼ (mþ n� 2(k� 1)) ·
Y
a2p

P(a),

where k is the length of p.

Unfortunately, the Irredundant Class (the name we will use for the general method in the rest of

the article) seems to lack the positive-definiteness property, and therefore it must be treated as an indefinite

kernel. In particular, following the work of Eichhorn (2007) for indefinite kernels applied to SVMs, we have

that the Irredundant Class is in the case of weak non-positivity, and thus we need only to force the SVM

optimizer to stop after a maximum number of iterations.

3. WHY RESORT TO IRREDUNDANT COMMON PATTERNS?

The exhaustive detection of homologies in protein families and superfamilies leads to prohibitive

computational methods, but on the other hand a low-complexity detection, for example using k-mers,

would only consider a low-significant set of possible homologies, often overcounting the same information.

These issues can be solved using an alternative method based on irredundant common patterns. Moreover,

the automatic filter given by the notion of ‘‘non-redundancy,’’ or irredundancy, ensures us to select just

those informative patterns that characterize the homologies of a pair of sequences.

We selected five algorithms of pairwise string similarity detection, used within the state-of-the-art

protein classification methods, for the comparison with our method: Spectrum, Mismatch, Word Corre-

lation (the core of Word Correlation Matrices), Local Alignment (namely the distance function given by all

local alignments), and Smith-Waterman (the core of Pairwise).

3.1. Description of state-of-the-art pairwise string algorithms

In the following, we briefly explain the meaning of the selected algorithms on a pair of sequences s1 and

s2, and then in the next subsection we estimate the redundancy, or information overcount, for each

algorithm. Note that every algorithm computes a specific score for each extracted pattern, and then a global

score is assigned to a pair of sequences using these pattern-specific scores.

In Spectrum (k), we count the number of occurrences for all the shared substrings (or consecutive

subsequences) of length k on S in s1 and s2. In Mismatch (k, e), we count the number of occurrences for all

the shared strings of length k on S in s1 and s2, and then we add each value to the other k-mers of which the

meet has at most e don’t cares. In Word Correlation (k), we compute a similarity score between all the

k-mers of s1 versus all the k-mers of s2, and this is like to consider all the meets on S[ {�} of k-length

substrings of s1 with k-length substrings of s2. In Local Alignment, we consider the global alignments

between all pairs of substrings of s1 and s2 (given a scheme of scores for matches, substitutions, insertions,

and deletions), that are all possible local alignments. Similar to Local Alignment, in Smith-Waterman, we

take the best global alignment between all pairs of substrings of s1 and s2. In Irredundant Class, we

consider all possible shared patterns on S[ {�} in s1 and s2, and then we avoid the contribution to be

‘‘overcounted’’ using the mathematical notion of irredundancy and selecting up to mþ n� 3 patterns

among the meets between all suffixes of s1 and s2.

3.2. Information overcount: from a theoretical perspective

For each method, we can now identify two characteristic phases: (1) pattern extraction and (2) pattern

processing. We can think the output of phase (2) as a vector of pattern-specific scores, where each column

represents just the score related to a single pattern.

For example, for Mismatch, (1) is the process of finding k-mers in the two sequences s1 and s2, while (2)

is the multiplication of the respective number of occurrences of these k-mers in s1 and s2, where the number

of occurrences of each k-mer is the number of times it appears with up to e errors. In this case, the output of

phase (2) will be the vector of values resulting from the multiplications, and each column will represent a

single k-mer. For Spectrum, (1) is the same as for Mismatch, but (2) is only the multiplication of the shared

k-mer occurrences without any other preliminary process, and thus without error parameters. For Word

Correlation, in (1) we individually find the k-mers of s1 and s2, and in (2) we compute a similarity score

between all the possible pairs of these k-mers (one k-mer of s1 versus one of s2). For Local Alignment, (1) is
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represented by the extraction of all the substrings of the two sequences, while (2) is the global alignment of

all the possible pairs of these substrings. For Smith-Waterman, (1) and (2) are the same as for Local

Alignment, but in (2) we have also a max operation between all the computed values on the possible global

alignments. For Irredundant Class, (1) is the extraction of all suffixes of s1 and s2, while (2) is the set of

operations in which we compute the meets between a sequence and a suffix of the other one, and then we

filter out the redundant ones.

Here we consider the information overcount as the number of outputs from phase (2) obtained taking into

account the same pair of characters of s1 and s2 more than once:

Definition 4. The information overcount is the number of vector components output of phase (2) in

which the same pair of characters, one from s1 and one from s2, contributes more than once.

Each output from phase (2), or component of the resulting vector, is intended as the score obtained

comparing some pairs of single characters. For instance, after phase (2) of Spectrum we have a vector of

values where each column represents the multiplication of the numbers of occurrences of a specific k-mer

found in s1 and s2. These k-mers are overlapped in the two sequences by construction, and each component

of the resulting vector represents at least k positions of each sequence. Therefore we use an information

about the comparison of a shared position between s1 and s2 in more than one k-mer, and thus we store this

information in more than one column of the final vector, resulting in an information overcount. We call the

model that considers the information overcount as the Information Overcount Model.

Table 1 shows a comparison of the algorithms based on the Information Overcount Model, where we

fixed a priori m� n. The computation of these values is quite simple. For Irredundant Class, the meets

between a sequence with all suffixes of the other sequence can be computed in a m · n grid, where each

item represents the comparison of two different characters and each meet is a different diagonal of items

from the top-left to the bottom-right part of the grid. Therefore, we have no information overcount. For

Smith-Waterman, we have again no information overcount, because after phase (2) we consider only the

best local alignment pattern that is comparing different characters in each position. For Spectrum, we could

have at most n� kþ 1 shared k-mers between s1 and s2. Thus, in this case, in s2 we have at most a coverage

of k times (given by the k-mers) for each of the n� 2(k� 1) central positions, and at most a coverage of

2
Pk� 1

i¼ 1 i times for all leading k� 1 and all trailing k� 1 characters. Given that a coverage without repetitions

Table 1. Comparison of Information Overcount for State-of-the-Art Methods

Algorithm Information overcount

Irredundant Class none

Smith-Waterman none

Spectrum (k) O(kn)

Word Correlation (k) O(kn)

Mismatch (k, e) O(keþ 1jSjen)

Local Alignment O(n3)

Comparison of algorithms using the Information Overcount Model, with m� n. Rows are listed from the

best to the worst.

Table 2. Comparison of Pairwise Complexity for State-of-the-Art Methods

Algorithm Pairwise complexity

Spectrum (k) O(kz)

Word Correlation (k) O(k2jSj2z)

Mismatch (k, e) O(keþ 1jSjez)

Local Alignment O(z2)

Smith-Waterman O(z2)

Irredundant Class O(z2 log z log jSj)

Comparison of algorithms based on their pairwise computational complexity, where z¼mþ n. Rows are

listed from the best to the worst.
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considers each shared position only once, we have a total information overcount of (k� 1)(n� 2(k� 1))þ
2
Pk� 2

i¼ 1 i¼ (k� 1)(n� k), hence O(kn). For Word Correlation, we have the same maximum value of in-

formation overcount as for Spectrum, because in the evaluation of pairwise similarity between the k-mers of

s1 and s2 we consider the comparison of a k-mer with another k-mer only once. Thus, the output repetitions

are based on the overlaps between the shared k-mers. In Mismatch, we have the information overcount of

Spectrum plus an additional redundancy due to the spreading of the number of occurrences of a k-mer to the

other k-mers within e errors. The last part of the summation can be estimated in k(n� kþ 1)Pe
i¼ 1

k

i

� �
(j
P
j � 1Þi, where the factor k is the number of positions covered by each k-mer, n� kþ 1 is the

maximum number of shared k-mers, and the last factor is the number of k-mers within e errors from a fixed

k-mer. Then, the resulting information overcount would be (k� 1)(n� k)þ k(n� kþ 1)
Pe

i¼ 1

k

i

� �
(j
P
j

� 1)i¼ O(keþ 1j
P
jen). Finally, in Local Alignment, we compute a global alignment for each pair of sub-

strings of s1 and s2. Thus the information overcount will be based only on the overlaps of these substrings in s2,

resulting in n(nþ 1)(nþ 2)=6 repeated outputs, that is O(n3).

In Table 2, we present a comparison of pairwise computational complexity for the six algorithms

described above, to give an idea of trade-off between information overcount (Table 1), computational

complexity, and effectiveness in the classification of protein sequences (Table 3). These values were taken

from the original papers.

4. EXPERIMENTAL RESULTS

We assess the effectiveness of the Irredundant Class method in the classification of protein families into

superfamilies. This problem refers to the detection of sequence homologies in evolutionarily related pro-

teins with low-sequence similarity, and is called remote homology detection.

Tests are based on the dataset described in Liao and Noble (2003),2 which uses the Structural Classi-

fication Of Proteins (SCOP)3 of Murzin et al. (1995), version 1.53. The data consist of 4,352 sequences

grouped into 54 families and 23 superfamilies selected by Liao and Noble. For each family, proteins within

the family are considered positive test examples, and proteins within the superfamily but outside the family

are considered positive training examples; negative examples are chosen outside the fold, and were ran-

domly split into training and test sets in the same ratio respect to the positive examples. Therefore this

assessment consists of 54 experiments, each corresponding to a target family and having at least 10 positive

training examples (taken from its respective superfamily) and at least five positive test examples (taken

directly from the family), and no sequence homologies known a priori. In these experiments there is usually

a much larger number of negative examples than of positive examples.

Table 3. Comparison of Experimental Results for State-of-the-Art Methods

Method Mean ROC

Irredundant Class 0.929

Local Alignment (version ‘‘eig’’) 0.925

Word Correlation Matrices (6) 0.904

Pairwise 0.896

Mismatch (5,1) 0.872

Spectrum (3) 0.824

Fisher 0.773

Comparison of algorithms based on their mean ROC score over all experiments. Rows are listed from the

best to the worst.

2The dataset is available at http://noble.gs.washington.edu/proj/svm-pairwise.
3SCOP, a protein classification constructed manually by visual inspection and comparison of structures, is available

at http://scop.mrc-lmb.cam.ac.uk/scop.
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We compared the Irredundant Class with the state-of-the-art methods using as metric the receiver

operating characteristic (ROC) score. For each experiment, given a ranking of the test example scores in

output from the SVM, the ROC score is the normalized area under the curve that plots the number of true

positive examples found as a function of the number of false positive examples detected (Gribskov and

Robinson, 1996). This is like to plot the number of true and false positives found on a two-dimensional

histogram (in abscissa the false positives, and in ordinate the true positives) for each different possible

classification threshold based on SVM scores.

All methods compared are of discriminative nature, so we used a popular SVM software: the Gist SVM4

described in Noble and Pavlidis (2002), version 2.3. Experimental results of the other methods were taken

from Saigo et al. (2004) and Lingner and Meinicke (2008).5

Table 3 shows the mean ROC scores, that is the average of ROC scores over all experiments, for the

Irredundant Class and the other methods. These scores indicate that our method outperforms most

methods in literature, and it is comparable to the state-of-the-art Local Alignment. For a more detailed

view, the ROC scores distribution is illustrated for some methods in Figure 2. The Local Alignment

(triangles) seems to perform slightly better than the Irredundant Class (squares), but the minimum ROC

score of the Local Alignment is much smaller. In particular, the smallest ROC score of our method was

obtained in experiment 15 of Liao and Noble (2003) with a value of 0.614, while all other methods got

their lowest peaks in experiment 13 with very small values, for example 0.22 for the Local Alignment. To

confirm this fact, Figure 3 reports the ROC scores distribution showing in detail the trend for all

experiments, and evidencing that the Irredundant Class exhibits, in general, a more robust behavior than

the other methods.

Finally, Table 4 reports the number of irredundant common patterns against a less restrictive notion of

patterns, the maximal common patterns introduced in Comin and Verzotto (2010), for 10 pairs of protein

sequences taken from experiments. Results indicate that the number of irredundant common patterns I s1, s2

tends to be an order of magnitude smaller than the number of maximals Ms1, s2, except for very short

sequences (see pair numbers 9 and 10 of Table 4). Furthermore, Table 4 shows that by slightly relaxing the

notion of irredundancy (e.g., considering the maximal common patterns, that are in relation

I s1, s2
�Ms1, s2

) we could have a number of patterns that grows exponentially with the length of the

FIG. 2. ROC scores distributions.

ROC scores distribution for the Ir-

redundant Class and the state-of-

the-art methods.

4Gist SVM is available at http://www.bioinformatics.ubc.ca/gist.
5Details on the state-of-the-art results are available at http://sunflower.kuicr.kyoto-u.ac.jp/*hiroto/project/

homology.html.
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sequences, while the irredundants are in every case less than mþ n� 3, thus avoiding the comparison of the

same pair of characters of s1 and s2 a multiple number of times (see Section 3).

5. CONCLUSION

In this article, we study how the notion of irredundant common patterns can solve an issue that is rising

in the field of string kernels, the remote homology detection. Almost all string kernels are based on patterns

that are not independent, and therefore the associated scores are obtained using a set of redundant features.

We specifically address this issue considering a particular class of patterns called irredundant common

patterns. The method is based on the statistics of these patterns, and is called Irredundant Class. Results on

benchmark data show that the Irredundant Class outperforms most of the string kernels previously pro-

posed, and it achieves results as good as the current state-of-the-art method Local Alignment.

Despite its information properties, the Irredundant Class has a computational complexity that is much

more than linear in the length of the sequences, and, in addiction, it processes the same characters of a

single sequence a multiple number of times, due to pattern overlaps. Therefore, we plan to study a new

notion of common patterns to manage these issues, and to better fit the problem of remote homology

detection of protein sequences.

FIG. 3. ROC scores family-by-

family comparison. ROC scores

across experiments.

Table 4. Counting the Number of Irredundant Common Patterns

No. s1 s2 m n mþ n jMs1, s2
j jI s1, s2

j % I s1, s2

1. 1alo_4 1bjt_ _ 597 760 1,357 16,697 1,256 7.5

2. 1qaxa2 1cxp.1c 316 466 782 8,397 682 8.1

3. 1gai_ _ 1nmta2 472 227 699 7,037 612 8.7

4. 1cvua1 1lgr_2 511 368 879 9,014 787 8.7

5. 1gpea1 1yrga_ 392 343 735 6,853 653 9.5

6. 1qqja_ 3pccm_ 415 236 651 5,090 566 11.1

7. 1bxka_ 1ofga1 352 220 572 3,549 489 13.8

8. 1ebfa1 2naca1 169 188 357 1,126 277 24.6

9. 1a03a_ 1mho_ _ 90 88 178 257 108 42.0

10. 1gpt_ _ 1ayj_ _ 47 50 97 64 45 70.3

Number of irredundant I s1, s2
against maximalMs1, s2

common patterns over 10 pairs of protein sequences taken from experiments.

Rows are listed according to the percentage of irredundants over the number of maximals, knowing that I s1, s2
�Ms1, s2

.
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